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Testicular defense systems: immune privilege and innate
immunity

Shutao Zhao1, Weiwei Zhu1, Shepu Xue and Daishu Han

The mammalian testis possesses a special immunological environment because of its properties of remarkable immune

privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from

systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The

breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The

mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows

that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular

immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation

of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our

current understanding of testicular defense mechanisms and identifies topics that merit further investigation.
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INTRODUCTION

Testicular defense mechanisms have two aspects: protection of

auto-antigens from detrimental immune responses and

counteraction of invading microbial pathogens. The mam-

malian testis represents an immune privileged organ where

both allo- and auto-antigens can be tolerated without evoking

immune rejection. The initial discovery of the testis as an

immunoprivileged site was over 40 years ago when it was

observed that allografts in the rat testis enabled long or indef-

inite survival.1 Testicular immune privilege is maintained

through the coordination of systemic immune tolerance, the

local physical structure and active local immunosuppression.

The local immune modulatory milieu has been intensively

investigated, but the mechanisms underlying systemic immune

tolerance to male germ cell antigens are less understood. This

review briefly outlines the properties of testicular immune

privilege. Several recently published comprehensive reviews

should be consulted for more in-depth information.2–4

The testis can be infected by various microbial pathogens

derived from circulating blood or that ascend the genitourinary

tract. To elicit an appropriate and effective local response

against invading pathogens, testicular cells have to overcome

immune privilege. This is accomplished by adopting effective

antimicrobial innate immune responses. The roles of the pat-

tern recognition receptors (PRRs) in initiating testicular innate

immune responses are beginning to emerge. Testicular innate

immunity is particularly critical when systemic immunity is

reduced. Here, we discuss the local cellular innate immune

defense system of the testis.

Impairment of immune homeostasis in the testis can result

in orchitis, an etiological factor of male infertility. Orchitis is

characterized by the infiltration of leukocytes into the testis and

damage of the seminiferous epithelium.5 Although clinical

orchitis is defined as an inflammatory disease due to microbial

infection, testicular inflammation due to noninfectious factors,

such as chemical and physical factors, trauma and neoplastic

processes, should also be included.6 Notably, orchitis can per-

turb testicular functions and male fertility in humans, but

natural infectious orchitis has not been observed in mice.

Experimental autoimmune orchitis (EAO) that is induced by

immunizing animals with testicular antigens is used as a model

for elucidating the pathogenic mechanisms that are involved in

testicular damage.7 The testicular immune components of

EAO are documented in this review.
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IMMUNE PRIVILEGE IN THE TESTIS

Immune privilege implies a special immunological status

found in several mammalian tissues, where allografts and

xenografts have long survival rates.8 Immune privilege was

discovered via tissue transplantation experiments that were

conducted over a century ago involving transplantation of a

tumor into the rabbit eye or rodent brain. Subsequent studies

revealed that several mammalian tissues beyond the tissues

of the eye and brain exhibit immune privilege. These tissues

included the pregnant uterus and testis.8 The testis represents a

distinct immunoprivileged site where both allo-antigens and

immunogenic auto-antigens can be tolerated without evoking

detrimental immune responses.9

Properties of testicular immune privilege

The phenomenon of testicular immune privilege emerged as

early as 1767 when John Hunter transplanted a cock testis

into the belly of a hen and subsequently recovered a testis of

normal structure from the hen.10 Testicular transplantation

was broadly performed among animals and humans between

the 1910s to the 1930s.10 As a recipient site, the testis was

initially found to protect follicle development in transplanted

ovaries for a period of months.11 In the 1970s to the 1980s, a

variety of allografts and xenografts were found to function in

the testis for an extended amount of time.12 Notably, the sur-

vival time of insulin-secreting xenogeneic islets is significantly

prolonged in the testis compared to other recipient sites.13

The testicular properties that provide immune privilege

can also protect auto-antigenic germ cells from detrimental

immune responses. During the development of an individual’s

immune system, the ability to tolerate self-antigens is acquired.

A large number of auto-antigens, which are recognized as for-

eign molecules by the immune system, are produced by deve-

loping germ cells after immune competence is established.

These auto-antigens induce strong autoimmune responses

when they are injected into non-testicular sites.14 Based on this

property, the transplantation of allo- and xeno-genetic germ

cells into the testis has been a popular approach not only to

study germ cell development but also to breed commercially

viable and endangered species.15,16 Testicular immune priv-

ilege is not consistent among different species. Prolonged graft

survival in the testis has been convincingly demonstrated in

small laboratory animals, such as rats, mice and guinea pigs.1

However, the same studies conducted in other large species,

such as sheep and monkeys, have been less successful for

unknown reasons.17,18

MECHANISMS UNDERLYING TESTICULAR IMMUNE

PRIVILEGE

Testicular immune privilege was initially proposed to be attri-

buted to the absence of lymphatic drainage, which was chal-

lenged by the discovery of the afferent lymphatic vessels in the

testis.19,20 The sequestration of auto-antigens from the

immune system by the blood–testis barrier (BTB) was believed

to be critical for testicular immune privilege. However,

the interstitial spaces and early-stage germ cells that localize

outside the BTB, including spermatogonia and preleptotene sper-

matocytes, also benefit from immune privilege.10,21 These obser-

vations suggest that other mechanisms are involved in the

maintenance of testicular immune privilege. Multiple mechan-

isms and factors, including the physical structure, the local active

immunosuppressive milieu and systemic immune tolerance,

coordinate to regulate the immunoprivileged state in the testis.3,22

Testicular structure contributes to immune privilege

The testis is a complex organ with a unique physical structure and

a large number of cell types. The mammalian testis consists of two

distinct compartments: the seminiferous tubules and the intersti-

tial spaces between the tubules (Figure 1). Spermatogenesis occurs

within the seminiferous tubules and steroidogenesis is achieved by

Leydig cells that are located in the interstitial spaces. These two

processes are the dual functions of the testis.

Seminiferous tubules. Seminiferous tubules are surrounded by

myoid peritubular cells (MPCs). MPCs, together with Sertoli

cells (SCs), secrete substances that form the basal lamina that

encloses the seminiferous epithelium. The tubular wall com-

prises both MPCs and the basal lamina. The seminiferous epi-

thelium is composed of columnar SCs extending from the basal

lamina to the tubular lumen and developing germ cells that are

encompassed by SCs. This epithelium forms the microenviron-

ment for spermatogenesis (Figure 1). Although the tubular wall

is arguably believed to contribute to the immune privilege

within the tubules, the BTB formed by two adjacent SCs near

the basal lamina certainly plays a role in separating the majority

of germ cell antigens in the tubular lumen from the immuno-

logical components in the interstitial spaces. The BTB is created

by several types of junctions, including the tight junction, the

basal ectoplasmic specialization, the gap junction and the des-

mosome-like junction between two SCs, which divide the se-

miniferous epithelium into two parts: the basal and adluminal

compartments.23 The BTB limits the access of systemic

immune contents to the adluminal compartment and seques-

ters most of the auto-antigens of germ cells within the adlumi-

nal compartment. Therefore, the BTB has important functions

in maintaining the immunoprivileged state of the testis, at least

within the adluminal compartment.

In addition to their role in BTB formation, SCs have inherent

immunosuppressive properties. Suppression of the immune

responses by SCs through the secretion of immunosuppressive

factors was determined more than two decades ago.24,25 Tissue

transplantation studies confirmed that SCs provide immune

protection resulting in prolonged survival of grafts after co-

transplantation with SCs.26,27 Most cells undergo apoptosis

during spermatogenesis, and the cytoplasmic compartments

of sperm form residual bodies that are shed before maturation.

Phagocytic removal of the apoptotic germ cells and residual

bodies is critical in maintaining testicular homeostasis and

normal spermatogenesis.28 Phagocytosis of apoptotic cells is

a well-known process that regulates immunity and supports

self-tolerance.29 We recently demonstrated that damaged germ

cells induce inflammatory responses in the testis.30 Therefore,
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timely removal of apoptotic germ cells and residual bodies by

the SCs is important to avoid autoimmune responses.

Male germ cells secrete various cytokines, including IL-1a and

TNF-a, suggesting that germ cells may function in regulating the

immune response.31,32 Fas ligand (FasL) is abundantly expressed

in male germ cells.33 FasL-induced apoptosis of Fas-bearing

lymphocytes is an important mechanism for suppression of

immune responses.34 However, whether the FasL expressed in

germ cells contributes to testicular immune privilege remains to

be elucidated. Although SCs and germ cells may be important

in suppressing immune responsiveness and contributing to

immune privilege within the seminiferous tubules, the intersti-

tial spaces are also immunoprivileged microenvironments.

Immunological contents in the interstitial spaces. The interstitial

spaces represent only a small part of the testis, but they are

composed of a large number of cell types. In particular, most

types of immune cells can be found in the interstitial spaces.

Macrophages are a major population of cells that represent

approximately 20% of the total testicular interstitial cells in

mice under physiological conditions.35 The macrophages have

an important function in regulating the development and ster-

oidogenesis of Leydig cells in rats.36 Macrophages belong to the

family of antigen-presenting cells. However, testicular macro-

phages exhibit relatively low inflammatory responses and high

immunosuppressive properties compared with the macro-

phages located in other tissues.37 Moreover, testicular macro-

phages in rats are less activated in response to pathogen

stimulation, and they constitutively produce anti-inflammatory

cytokines.38,39 These phenotypes support testicular immune

privilege. By contrast, circulating macrophages significantly

infiltrate the testis in orchitis and are detrimental to spermato-

genesis.40,41 Clinical observation revealed high macrophage

numbers in the testis of patients with aspermatogenesis and

infertility indicating a negative correlation between circulating

macrophages and spermatogenesis.42

Dendritic cells (DCs) exist in the testicular interstitial spaces

and represent a minor population of the interstitial cells in the

normal testis, reaching one-tenth of the numbers of macro-

phages. DC numbers significantly increase in EAO,43 suggesting

that these cells may be involved in the testicular autoimmune

response. DCs, the most powerful antigen-presenting cells,

induce activation and differentiation of lymphocytes in res-

ponse to allo-antigens, but also minimize the autoimmune res-

ponse by tolerating T cells to auto-antigens under physiological

conditions.44 The functions of DCs in the testis are not yet

understood because of their small numbers. The DCs in the

normal testis exhibit immature phenotypes.45 Testicular DCs

and DCs from testicular draining lymph nodes do not activate

lymphocytes under physiological conditions. This suggests that

the testicular DCs have adopted tolerant status. In rat EAO,

DCs exhibit mature properties.46

Lymphocytes are always found in the interstitial spaces of the

rat testis under physiological conditions.47 Most testicular lym-

phocytes are T cells, with CD81 cells being more predominant

and CD41 cells more rare. B cells are not found in the normal
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Figure 1 Schematic of the mammalian testicular structure. The testis consists of two compartments: the ST and the interstitial space. The ST is
surrounded by MPC, which together with Sertoli cells secrete substances to form the BL that encloses the seminiferous epithelium. The semini-
ferous epithelium is composed of different stages of developing germ cells, including SPG, PSCs, SSCs, RSs and ESs, which are surrounded by
columnar Sertoli cells extending from the BL to the lumen of the seminiferous tubules. The BTB is formed by the junctions between neighboring
Sertoli cells near the BL. BL, basal lamina; BTB, blood2testis barrier; ES, elongated spermatid; MPC, myoid peritubular cell; PSC, primary
spermatocyte; RS, round spermatid; SPG, spermatogonia; SSC, secondary spermatocyte; ST, seminiferous tubule.
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testis. In EAO and infertile patients with sperm autoimmunity,

the number of lymphocytes is significantly high,48,49 suggesting

that lymphocytes are involved in testicular pathogenesis under

inflammatory conditions. The rat testis also contains immu-

noregulatory T cells, including natural killer (NK) T cells and

CD41CD251 regulatory T cells (Tregs). Tregs are powerful

immunosuppressive cells that promote peripheral tolerance

and control the tolerogenic versus autoimmune response to

sperm antigens in vasectomy models.50 Lymphocyte subsets

shift in a rat testis undergoing autoimmune-related orchitis.51

Mouse testes that receive pancreatic islet cell allografts destroy

memory T cells and recruit Tregs.52,53 These observations sug-

gest that Tregs contribute to testicular immune privilege. The

roles of NK cells have not yet been reported in the testis.

Mast cells are among the most significant immune cell popu-

lations in the testis. Mast cell increases are associated with male

infertility.54 Mast cells increased more than 10-fold in number

in EAO models.55 These cells secrete serine protease tryptase,

which induces fibroblast proliferation and collagen synthesis

by fibroblasts, thus resulting in tissue fibrosis and sclerosis.56

Accordingly, granuloma formation, a type of fibrosis in the

testis, is frequently observed in infertile patients and in EAO

models.57 In addition to the inflammatory regulation, mast

cells are essential intermediaries for regulatory T-cell to-

lerance.58 However, the functions of the mast cells in maintain-

ing testicular immune privilege remain unclear.

In addition to the immune cells, steroidogenic Leydig cells

represent the majority of interstitial cells. Leydig cells synthe-

size androgens for both spermatogenesis and extratesticular

androgen target organs.59 Previous studies demonstrated that

rat Leydig cells exhibit innate antiviral ability in response to

viral infection.60,61 Human Leydig cells show relatively weak

antiviral activity compared with rat cells.62 These observations

raise an interesting question whether the human testis has a

weaker innate defense system against viral infection compared

with the murine testis. Notably, microbial infection frequently

results in orchitis in humans. By contrast, natural orchitis due

to microbial infection has not been found in mice. Given that

most studies of testicular immunity have been performed in

murine models, the innate defense mechanisms in the human

testis are relevant topics for future research. Leydig cells also

regulate immune responses by affecting testicular macrophage

and lymphocyte numbers.63 Androgens suppress autoimmune

responses, which is associated with the immunological differ-

ences between the sexes.61 Androgens also regulate the testicu-

lar immunoprivileged status.64–66 Notably, androgens would

not directly affect testicular immune cells because these cells

lack the androgen receptor.

MPCs are located outside of the BTB and conveniently com-

municate with the interstitial cells. The contractile ability of

MPCs to facilitate transport of spermatozoa from the testis to

the epididymis is their best-characterized function.67 Based on

their localization, MPCs are believed to regulate the testicular

immune environment. MPCs secrete numerous cytokines,

including pro-inflammatory and anti-inflammatory factors,

under physiological and inflammatory conditions.22,68 The

functions of MPCs that are involved in regulating testicular

immunity are worthy of further investigation.

Endocrine and paracrine controls of testicular immune

privilege

Both endocrine and paracrine networks coordinate to regulate

testicular immune privilege (Figure 2). The androgens synthe-

sized by Leydig cells suppress both systemic and testicular

immune responses to auto-antigens. Moreover, several nega-

tive regulatory immune systems have been found in the testis.

In particular, numerous paracrine cytokines, including various

anti-inflammatory factors, would contribute to the mainten-

ance of testicular immune privilege.

Endocrine hormones. Leydig cells synthesize androgens upon

luteinizing hormone regulation. Androgen administration sup-

presses autoimmune disease.69 Luteinizing hormone antagonists

reduce the levels of Tregs and increase the levels of NK cells in

men.70 Testosterone inhibits EAO induction in rats.66 Within

the testis, the androgens act on SCs that express the androgen

receptor. Conditional knockout of the androgen receptor in SCs
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Figure 2 Schematic of immunosuppressive molecules that support
immune privilege in the testis. SCs and LCs secrete multiple immuno-
suppressive factors, including activin A, TGF-b, PDL-1, Gas6, ProS and
testosterone, which directly or indirectly suppress immune cell activa-
tion. MQ and MCs exhibit immunosuppressive properties by producing
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gene 6; LC, Leydig cell; MC, mast cell; MQ, testicular macrophages;
PDL-1, programmed death ligand-1; ProS, protein S; SC, Sertoli cell;
TGF-b, transforming growth factor b.
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in mice impairs testicular immune privilege, possibly due to the

impairment of BTB permeability.65,71 Taken together, andro-

gens would contribute to testicular immune privilege by nega-

tively regulating the local immune responses and systemic

tolerance to auto-antigens.

Negative immunoregulatory systems. Several immunosuppres-

sive systems have been identified in the murine testis. The Fas/

FasL system suppresses immune responses by inducing the

apoptosis of Fas-bearing activated lymphocytes.72 FasL is abun-

dantly expressed in the testis.73 This system was demonstrated

to be critical in maintaining testicular immune privilege by

inducing lymphocyte apoptosis via FasL expression in SCs.74

This conclusion had been challenged by the observation that

neutralizing antibodies to FasL did not reduce the survival of

islets in diabetic mice after cotransplantation with SCs.75 FasL is

predominantly expressed in male germ cells, but not in SCs.33

Whether FasL that is expressed in the germ cells induces

lymphocyte apoptosis and contributes to immune privilege

within the seminiferous tubules remains to be investigated.

Programmed death receptor-1/programmed death ligand-1

(PD-1/PD-L1) is another T-cell tolerance system. PD-L1 inhi-

bits T-cell activation through PD-1.76 It is constitutively

expressed in the testis and involved in the survival of islet

allografts, suggesting that the PD-1/PD-L1 system is a mecha-

nism that underlies testicular immune privilege.77

The growth arrest-specific gene 6 (Gas6)/Protein S (ProS)-

Tyro3, Axl and Mer (TAM) system is a negative regulatory

immune system.78 We showed that TAM receptor tyrosine

kinases and their common ligands, Gas6 and ProS, regulate

immune homeostasis in the mouse testis. TAM receptors are

abundantly expressed in SCs and Leydig cells, whereas Gas6 and

ProS are predominantly produced by Leydig cells.79 Male TAM

triple knockout (TAM2/2) mice are infertile and develop

chronic orchitis.80–82 Multiple mechanisms can be involved in

the regulation of testicular immunity by the Gas6/ProS-TAM

system. TAM receptors are negative regulators of systemic

innate immunity.83 We also demonstrated that TAM signaling

inhibits the innate immune responses in SCs and Leydig

cells.84,85 Moreover, the Gas6/ProS-TAM system facilitates pha-

gocytic clearance of apoptotic germ cells by SCs.86 The removal

of apoptotic germ cells by phagocytes facilitates the elimination

of the auto-antigens, which may reduce endogenous inflam-

mation. We recently demonstrated that damaged germ cells

induce endogenous inflammatory responses in the testis.30

Therefore, the Gas6/ProS-TAM system plays roles in maintain-

ing testicular homeostasis by inhibiting local innate immune

responses and facilitating the clearance of auto-antigens.

Immunosuppressive factors. Numerous local immunoregula-

tory cytokines, including both pro-inflammatory and anti-

inflammatory factors, are involved in the regulation of the

testicular immune environment.22 The anti-inflammatory fac-

tors can actively suppress the immune response in the testis.

The transforming growth factors (TGF) b12b3 are constitu-

tively expressed in the testis and predominantly produced by

SCs.87,88 As an anti-inflammatory factor, TGF-b1 is implicated

in the protection of islet b-cell grafts after co-transplantation

with SCs.27 SCs also abundantly express activin A and B.89 The

activins have functions in SC development and initiation

of spermatogenesis.90,91 Activin A inhibits the expression of

pro-inflammatory cytokines, including IL-1 and IL-6, thus

suppressing the testicular inflammatory responses.92 IL-10 is

also a well-defined anti-inflammatory factor in the testis. IL-10

can be induced by orchitis and is predominantly produced by

testicular macrophages.93 Overexpression of IL-10 in the testis

significantly reduces the levels of inflammation in EAO mo-

dels.94 Therefore, multiple immunosuppressive factors are

involved in the maintenance of immune homeostasis in tes-

ticular tissue.

TESTICULAR INNATE IMMUNITY

Although the testis is an immunoprivileged site where systemic

immune responses are remarkably reduced, microbial patho-

gens that invade from both the circulating blood and via the

ascending male genitourinary tract are usually eliminated. This

phenomenon suggests that the testis has effective local innate

immunity against invading pathogens. The testicular innate

antiviral responses have been previously demonstrated based

on a series of pioneering studies on the expression and regu-

lation of both interferons (IFNs) and antiviral proteins in the

testis by Professor Jégou’s group.60–62,95,96 These investigators

also showed that several defensins are expressed in murine and

human testes, and may contribute to the innate antimicrobial

defense.97 Recent studies have revealed that various PRRs are

abundantly expressed in testicular cells and initiate testicular

innate immune responses. The PRR-initiated innate responses

would be important for testicular cells to overcome immune

privilege and elicit an appropriate local response against patho-

gen invasion. PRRs are a superfamily of receptors that can be

activated by conserved molecular structures of microbial

pathogens, termed pathogen-associated molecule patterns

(PAMPs). PRR activation initiates the innate immune response

and subsequently drives the adaptive immune response

involved in counteracting microbes.98 PRRs can also be acti-

vated by endogenous auto-antigens released from damaged

tissues and necrotic cells, termed damage-associated molecular

patterns (DAMPs) and trigger endogenous inflammation.99

Several subfamilies of PRRs have been identified.100 Toll-

like receptors (TLRs) are the best characterized, and 13 TLR

members have been found in mammals. The cytosolic double-

stranded RNA (dsRNA) sensors, termed retinoic acid-inducible

gene I (RIG-I)-like receptors (RLRs), include two functional

members, namely, melanoma differentiation-associated protein

5 (MDA5) and RIG-I. The NOD-like receptor (NLR) subfamily

contains a large number of cytoplasmic PRRs that recognize a

broad spectrum of PAMPs and DAMPs. Moreover, intracellular

DNA sensors have recently emerged.101 Since the first invest-

igation of TLRs in testicular SCs,102 several PRRs that initiate

the testicular innate immune responses have been described,

and their signaling within testicular cells has been documented
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(Figure 3). Table 1 shows a summary of the expression and

function of PRRs in testicular cells.

TLRs in testicular cells

TLRs are the best-characterized PRRs in the testis.103 Func-

tional TLRs were initially demonstrated within murine SCs,

showing that TLR2 and TLR4 signaling can be initiated by their

ligands.102 TLR expression was then further defined in male rat

reproductive tracts and testicular cells.104,105 The functions of

more TLRs, including TLR3, TLR5 and TLR6, were investigated

in mouse SCs by our group and by other researchers.106,107

TLRs initiate the innate immune response in SCs by inducing

immunoregulatory cytokines, including TNF-a, IL-1, IL-6,

MCP-1 and type 1 IFNs (Table 1). In addition to SCs, we also

found that TLR3 and TLR4 are expressed and are functional in

murine Leydig cells.85 Interestingly, TLR-initiated innate

immune responses in Sertoli and Leydig cells are negatively

regulated by Gas6/ProS-TAM signaling, which may play roles

in avoiding sustained inflammatory conditions that could

impair testicular functions.84,85 Different stages of germ cells

also express TLRs.105 We recently demonstrated that TLR3 in

spermatogonia and spermatocytes and TLR11 in spermatids

initiate innate immune responses.108,109 The TLR-initiated

innate immune responses in male germ cells are particularly

interesting because the germ cells represent a majority of the

testicular cell population. Moreover, the adluminal compart-

ments of the seminiferous tubules are separated from the inter-

stitial immune components by the BTB. Therefore, the innate

immune responses in the germ cells and SCs within the se-

miniferous tubules would be critical to counteracting the invad-

ing pathogens from the ascending genitourinary tract. The

innate defense function of male germ cells is worthy of further

investigation.

The RLR-initiated innate antiviral response

RLRs are cytosolic dsRNA sensors, which recognize viral

dsRNA that are produced by many types of viruses during

replication, thus initiating antiviral immune responses.110

RLRs can also be activated by the synthetic dsRNA analog,

polyinosinic–polycytidylic acid (Poly(I:C)). The RLR subfa-

mily contains three members: RIG-I, MDA5 and laboratory

of genetics and physiology 2. Laboratory of genetics and physi-

ology 2 does not induce an innate immune response due to its

lack of the domain responsible for triggering signaling.111 By

contrast, both RIG-I and MDA5 initiate innate antiviral res-

ponses following recognition of viral dsRNA. We recently

demonstrated that RIG-I and MDA5 are abundantly expressed

in mouse Leydig cells, and MDA5 is also expressed in sperma-

tids.112 Poly(I:C) triggers innate antiviral responses in both

Leydig cells and spermatids through RIG-I/MDA5-mediated

signaling. Poly(I:C) induces the expression of IFN-a/b and

several antiviral proteins in Leydig cells and germ cells

(Table 1). The innate antiviral state in mouse testicular cells

is interesting because viral infection can cause chronic orchitis

and perturb testicular functions and male fertility in humans.6

However, natural viral orchitis has not been observed in mice.

Whether human testicular cells possess weaker antiviral capa-

cities compared with their murine counterparts is worthy of

investigation via analysis of human samples. Understanding

the different mechanisms underlying the innate defense system

between murine and human testes would aid in the develop-

ment of therapeutic and preventive strategies for orchitis.

Other PRRs in the testis

In addition to TLRs and RLRs, NLRs belong to another sub-

family of intracellular PRRs that are characterized by a com-

mon NOD motif.113 More than 20 NLR members have been

identified in humans, and these NLRs recognize a broad spec-

trum of PAMPs and DAMPs. NLRs exhibit different functions

in the defense against pathogens. Some of these NLRs, such as

NOD1 and NOD2, induce inflammatory cytokine expres-

sion.113 Other NLRs are involved in the processing and activa-

tion of inflammatory cytokines, including IL-1b and IL-18,

which are activators of inflammasomes.114 Both NOD1 and

NOD2 mRNAs were detected in some testicular cells, including

SCs and germ cells,105 but their functions in these cells have not
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the IPS-1-dependent signaling pathway. Different PRR signaling path-
ways activate multiple transcription factors, including AP1 and NF-kB,
to induce pro-inflammatory cytokine expression, as well as IRFs, for
induction of type 1 IFN-a/b. AP1, activator protein 1; IFN, interferon;
IPS-1, IFN-b promoter stimulator 1; IRF, interferon regulatory factor;
MDA5, melanoma differentiation-associated protein 5; MyD88, myeloid
differentiation protein 88; PRR, pattern recognition receptor; RIG-I,
retinoic acid-inducible gene I; TLR, Toll-like receptor; TRIF, Toll/IL-1
receptor domain-containing adaptor protein-inducing interferon-b.
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been examined. Many NLR members are involved in immune

modulation as inflammasome activators.115 The functions of

the inflammasomes in the testis remain to be clarified. The

antiviral functions of cytosolic DNA sensors have been deter-

mined.101 The functions of DNA sensors in the testis are worthy

of investigation in order to ascertain the full contributions of

the PRR-mediated testicular innate immune responses to the

testicular defense against different pathogens.

CONCLUDING REMARKS

The testis exhibits special defense mechanisms considering its

remarkable immunoprivileged status and effective local innate

immunity. Disruption of the testicular immunological envir-

onment may lead to chronic orchitis, which is a significant

etiological factor of male infertility. Further understanding of

the mechanisms underlying testicular immune homeostasis

has important implications for the intervention of male

immunological subfertility. The function of PRRs and their

role in negatively regulating systemic tolerance to testicular

auto-antigens are relevant areas for future research. In PRR-

initiated testicular innate immunity, the functions of inflam-

masomes and cytosolic DNA sensors need further elucidation.

The innate defense functions of germ cells deserve great atten-

tion because of the large number of these unique cells within

the testis. Notably, the innate immune response is a ‘double-

edge sword’. Defense against microbial pathogens is critical for

hosts to recover from infection. However, the inflammatory

milieu may cause damage to the host. The detrimental effects

of inflammatory cytokines that are secreted by the testicular

cells need to be clarified. The investigations on these topics will

further improve our understanding of the testicular defense

mechanisms and may provide novel clues that will be useful

for translational medicine.
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